Recitation 3

Computing Derivatives and Autograd

Talha Faiz, Fuyu Tang, and Zishen Wen

Agenda

1. Autograd and Computational graphs

2. Back propagations: derivatives, gradients, and chain rules
3. Computing derivatives

Autograd — HW1 Bonus

Automatic differentiation

e Recall what we did in back propagation (will cover in details soon):

o Express the computation as a series of computations of intermediate values
o Repeatedly apply the chain rule of differentiation

e All computer functions can be rewritten in the form of nested differentiable
operations

e We, thus, could use a framework, “Automatic Differentiation” (Autodiff), to
calculate the derivatives of any arbitrarily complex function.

Automatic differentiation

e In this bonus, we will build an alternative implementation of MyTorch

(HW*P1), based on a popular Automatic Differentiation framework —
Autograd.

e By doing this bonus, you might find your time spent on part 1s is saved!

e Key components:

o Autograd engine -> the core class for performing Autodiff

o Functional scripts/ activation/ linear/ loss -> Similar to part 1s, but are expected to be
decomposed into the most basic operation, in order to be recorded by autograd engine

o Utils -> contains methods to store and update variables

Automatic differentiation

e Key ideas:
o All calculations are break down into several basic operations (e.g. add, div, matmul, etc.)
o Use alist to track the sequence of operation
o When performing back propagation, the list is evaluated in reverse order (i.e. calculate the
gradient of inputs at each step and update them).

Automatic differentiation

e Example:
o y=Wx+b

m We first break it down to two basic operations: matmul and add:
z=Wx
y=z+b
m Foreach of those operations, we add a spot in Memory buffer for each of the inputs,
create an Operation object saving all information related to the operation and then
append it to operation list of Autograd class

m lterate over the operation list in reverse order

Automatic differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

9(f(8)+g(6)) _ 9f(6) 3 9g(6) 0(f(6)g9(0)) _ g(6) L2 af(9) + f(9) 22 09(9) 9r(9(6)) _ 9f(g(6))9g(6)

20 BT 26 20 26 ~ ag(e) a6

Naively do so can result in wasted computations

. . ()
Example: £(0) = [0[0, 5 l_[6,

J#k

Cost n(n — 1) multiplies to compute all partial gradients

Slide from :https.//dIsyscourse.org/slides/4-automatic-differentiation. pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Computational graph

y = f(xy,x5) = In(x;) + x;x, — sinx,
Forward evaluation trace

X1 Vy=X=2
v, =x,=5
y vz =Ilnv; =ln2 = 0.693
v, =v1Xv, =10
vs = sinv, = sin5 = —0.959
X2

Vg = V3 + v, = 10.693
vy = Vg — Vs = 10.693 + 0.959 = 11.652
y =v,; = 11.652

Each node represent an (intermediate) value in the
computation. Edges present input output relations.

Slide from :https.//dIsyscourse.org/slides/4-automatic-differentiation. pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation (Forwards)

Y= f(x1.x2) - ln(xl) + xX1X; — sinx;

. . avi
x4 Define v; = s
We can then compute the v; iteratively in the forward
topological order of the computational graph
X2
Forward evaluation trace Forward AD trace
vl = x1 =2 v.l =1
vZ = xz - 5 v.z - 0

V3 = lnv1 =In2 = 0.693

v, =X, =10

Vg = sinv, = sin5 = —0.959

Ve = V3 + v, = 10.693

v; = vg — Vg = 10.693 + 0.959 = 11.652
y =v; = 11.652

Slide from :https.//dIsyscourse.org/slides/4-automatic-differentiation. pdf

V3 =v;/v; =05

Uy = VU + V1 =1X54+0%X2=5
Vs = U008V, = 0Xcos5 =0

Vg =V3+1V, =054+5=5.5

Vs = Vg — Vs =5.5—0=05.5

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation (Forwards)

For f:R™ - R¥, we need n forward AD passes to get the gradient with respect to
each input.

We mostly care about the cases where k =1 and large n..

In order to resolve the problem efficiently, we need to use another kind of AD.

Slide from :https.//dIsyscourse.org/slides/4-automatic-differentiation. pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation (Reversed)

Y = f(x1,x2) = In(x1) + x1x, — sinx;
In e

Forward evaluation trace
V=X, =2
V, =X, =5
v3 =Invy =In2 = 0.693
Uy, =11Xv, =10
Vs = sinv, = sin5 = —0.959
Vg = V3 + v, = 10.693
V7 = Vg — V5 = 10.693 + 0.959 = 11.652
y =v; = 11.652

Slide from :https.//dIsyscourse.org/slides/4-automatic-differentiation. pdf

Define adjoint v; = %

Vi

We can then compute the v; iteratively in the reverse
topological order of the computational graph

Reverse AD evaluation trace

av,
+ Wa—v: = TgX COSV, + TXv; = —0.284 + 2 = 1.716

s O oo

;= —=
vy

__ __0vy

6=V7_av

6

__ __0v,

s = Vs

avs

o o e 20V
4 = Vg

v,

N .

= P m—

3 66173

e dvg

szvS_av

2

. __0vy,
=79

1 4av1

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

References

Recommend to take a look

e https://dIlsyscourse.org/slides/4-automatic-differentiation.pdf
e https://en.wikipedia.org/wiki/Automatic differentiation

e htips://deeplearning.cs.cmu.edu/S22/document/recitation/Recitation3/Recit
ation 3.pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
https://en.wikipedia.org/wiki/Automatic_differentiation
https://deeplearning.cs.cmu.edu/S22/document/recitation/Recitation3/Recitation_3.pdf

During Back Propagations, you will find
we are doing the same thing....

What is a loss function and loss?

“The function we want to minimize or maximize is called the objective function or
criterion. When we are minimizing it, we may also call it the cost function, loss
function, or error function.” [1]

Functions of loss:

1.Monitor: Loss evaluates the performance of the model. The lower the loss is, the
better the model is.

2. Part of the optimizer:
Learning problem -> Optimization problem

Define loss function -> minimize the loss function

[1] lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2017

Back propagation of loss

Loss is the starting point of the back propagation

Backpropagation aims to minimize the cost function by adjusting network’s
weights and biases. The level of adjustment is determined by the gradients of the

cost function w.r.t. those parameters.

Back propagation: Derivatives, Gradients, and the Chain Rule

Training a network:

1. Forward Propagation with current parameters

2. Calculate the loss

3. Backward Propagation to calculate the gradients of the parameters
4. Step to update the parameters with gradients

The gradient is the transpose of the derivative

Derivatives

Mathematically, the derivative of a function f measures the A
sensitivity of change of the function value w.r.t. a change in

its input value x.

Ay=y2—1

= lim — (z1,1)
dx Ax—0 Ax

Geometrically, the derivative of the f w.r.t. x at xo is the
slope of the tangent line to the graph of f at xo. 7

Derivatives of non-linear functions

Let y=f(x) be a relation between two variables, y and x. If f(x) is continuous
and differentiable, any small perturbation of x will result in a small
perturbation of y. We define the derivative of y with respect to y as the
multiplier alpha that relates a miniscule perturbation 6x of x to the resulting
perturbation 6y of y.

y=f)

ox

ox

Sy

Sy

Derivatives

We note “the derivative of y with respect to x” as
Ay =V,y Ax

The shape of the derivative for any variable will be transposed w.r.t that variable
Ex:

For a function with scalar input x and scalar output y,
its derivative is a scalar.

For a function with (D x 1) vector input x and scalar output vy,
its derivative is a (1 x D) row vector.

For a function with (D x 1) vector input x and (K x 1) vector output y,
its derivative is a (K x D) matrix.

Derivatives

Scalar derivatives (scalar in, scalar out)

Ay = f'(x) Ax
Multivariable derivatives (vector in, scalar out)

Ax1
0 9,
Ay = Vyy Ax = % %‘ :
If 1 D AxD

Derivatives

Multivariable derivatives (vector in, vector out)

X1

Input x = I 3 } Output y=

XD

Ay1

Kx1

Vxy Ax

_ayl

dx1

dyk

| 0x1

0y1]
dxp
dyk
0xp |

KxD

Key Ideas about Derivatives

1. The derivative is the best linear approximation of f at a point
2. The derivative is a linear transformation (matrix multiplication)
3. The derivative describes the effect of each input on the output

Computing Derivatives — Scalar Chain Rule

L=f(z)
z = g(x)
All terms are scalars

oL e
o, Is given

oL Loz oL
ax ~dzox 929

(given)

Computing Derivatives — Scalar Addition

L=f(z)
Z=x+Yy
All terms are scalars

oL e
o, Is given

oL dLdz L
dx 0z0x 0z
oL 9Ldz OL
dy 0z0y 0z

Computing Derivatives — Scalar Multiplication

L=f(z)
z=Wx
All terms are scalars

oL .

-, is given

oL 9Lz oL
ox ~9zox - 3z W
oL oL 9z oL

—_— D ——= X —

ow dz oW 0z

Computing Derivatives — Scalar Generalized Chain Rule

L=f(z)
Zz=zZ1+2Z2+ -+ zZn=g1(x) + g2(x) + - + gn(x)
All terms are scalars

oL e
o, Is given

dL 0dLdz 0L dg:1 092 dgn
gx —dzox "9z ex tax Tt o)

Computing Derivatives — Multivariable Chain Rule

L=f(2)
z = g(x)

Here we assume that Lis M x 1 vector
x1s D x 1 vector, z is Kx 1 vector
V.L is given (M x K) matrix

Vil =V, LV, Z
MxD MxK KxD

Computing Derivatives — Multivariable Vector Addition

L=f(2)
Z=xtYy
x, y, zare all D x 1 vectors
V.L is given (M x D) matrix

Vil = VL ViZ = VL
VyL =V,LVyZ =V,L

MxD MxD DxD

Computing Derivatives — Multivariable Vector Addition of

derivatives
L=fi1(2)+ f200)
z=g(x)
y = h(x)

x is D x 1 vector, z is Kx 1 vector, y is M x 1 vector
V.L is given (N x K) matrix
VyL is given (N x M) matrix

NxD NxK KxD NxM MxD

Computing Derivatives — Multivariable Matrix Multiplication

L=f()
z=Wx
x isaDx 1 vector
z1s a Kx 1 vector
W is a K x D matrix

V.L is given (1 x K) vector

Vel =V,LVZ = (VZL)W 1xD
VwL =V, LVwZ =x(V.L) DxK

Computing Derivatives — Multivariable Generalized Chain Rule

L=71()
z=z1+2z2+ -+ zZn = g1(x) + g2(x) + -+ + gn(x)

Loss Lisa M x 1 vector
xisaD x 1 vector

zisaKx 1 vector
V.L is given (M x K) matrix

VxL — VzL VxZ — VzL(Vx21 + VxZZ + -+ VxZn)

Computing derivatives of complex functions

e \We now are prepared to compute very complex derivatives
e Procedure:
o Express the computation as a series of computations of intermediate values
o Each computation must comprise either a unary or binary relation
m Unary relation: RHS has one argument, e.g. y = g(x)
m Binary relation: RHS has two arguments
eg.z=x+yorz=xy
o Walk your way backward through the derivatives of the simple relations

Example:
® Yo = tanh(le_X']_ + bxl + szxz + be) G
e 71 = tanh(Wy1y1 + by, + Wy, y2 + byz)

—: (Wx + b)

Example:

® Yy = tanh(le.X]_ + bxl + szxz + bXZ)

e—zi+=tanh

i1 = Wxx1 G
2 = Wxx2

i3 = i1+bx1+i2+bx2

y2 = tanh(iz)

Example:

e ys — tanh B . o on G

® 7| = tanh(Wy1y1 + by, + Wy,y2 + byz)

l4 = Wy1y1 G
i6: i4+by1 +i5+by2

z1 = tanh(is)

Example:
® Yo = tanh(le_X']_ + bxl + Wx2X2 + be) G
o 71 = tanh(Wy1y1 + by, + Wy,y2 + byz)

Ly = Wy, 51 Q Q

i6:i4+by1+i5+by2
z1 = tanh(is)

1
2 = Wx,x2

i3 = i1+ by, +i2 + by,
y2 = tanh(iz)

1 = va1x1

Example:

® Yo = tanh(le_X'l + bxl + Wx2X2 + be) G

e 71 = tanh(Wy1y1 + by, + Wy, y2 + byz)

* Given (VL) 6
dzq

Ly = Wy 1 Q Q

i6:i4+by1+i5+by2
z1 = tanh(is)

1
2 = Wx,x2

i3 = i1+ by, +i2 + by,
y2 = tanh(iz)

1 = va1x1

Example:

o d = '
e Given é(vml‘) © tanh(l6)

e ViL=V,LV;z1="V,L(1-tanh?(ic))
6 1 6 1

Example:

. dL
o Given _— (V, L)

o VL=V, LV,z=1V,L (1 - tanhz(i6))
o VL=V LVic="ViL
° be L=VL be ig = ViL
1 1
o Vil=ViLViig=ViL
° be L=VL be ig = ViL
2 2

o z1 = tanh(is)
o ic=is+by +is+bhy,

Example:
dL
i = (v
o Given (V, L)
o ViL=V,LViz1=V,L({~— tanhz(i6))
6 1 6 1
) |7i4L = \7i6L \71'4 lg = \7i6L
° be L=Vl be ie = Vi L
1 1
o Vil=ViLViig=ViL
° be L=Vl be ig = Vi L
2 2

o z1 = tanh(is)
o ic=is+by +is+bhy,
® i5= WYzyZ

Y waZL = Vi L waz i5 =y2ViL
o Vy,L=ViLVyis=ViLW,,

Example:

. d _ :
e Given i (|7Z1 L) ° ?1 .tanhb(l6) "
e ViL=V,LV;z1=V,L(1-tanh(is)) ® lo=lt Dby +is+ Dby,
6 1 6 1 ° l5 — Wyzyz
o VL=V LVic="ViL o i=W,
1

© VU L=V LV, ig="V,L
o Vil =VilLViie="VilL

® Vb, L =Vil Vb, ic= Vil

® Vw, L=ViLVw, is = y2 Vil
o VL ="ViLV,is=Vi.LW,
 Vw, L=ViLVw, is=y1ViLl
o VyL=ViLVyis= Vi,L Wy,

Example:

® Yo = tanh(le_X'l + bxl + Wx2X2 + be) G

e 71 = tanh(Wy1y1 + by, + Wy, y2 + byz)

* Given (VL) 6
dzq

Ly = Wy 1 Q Q

i6:i4+by1+i5+by2
z1 = tanh(is)

1
2 = Wx,x2

i3 = i1+ by, +i2 + by,
y2 = tanh(iz)

1 = va1x1

Example:

L ® y2 = tanh(is)
o G|Ven E (Vyz L)
o ViL=V,LV:y,="V,L(1-tanh?(i3))

3 2 3 2

Example:

| et e 1y, = tanh(iz)
e Given > (V,,L)

® i3=1i1+by +i,+b
() Vi3L = VyzL Vi3y2 = VyzL (1 — tanhz(i3)) X1 2 X2

o VL ="VyLViiz="V;lL
° Vble = Vi, L \7bx1 i3 = Vi,L
o ViyL="VyLViz="VglL
o Vbsz = Vi, L \7bx2 i3 = Vi,L

Example:

e Given j—L (7, L) ® y2 = tanh(is)
VL ;ZLV VL(l ; hz()) o i3:i1+bx1+i2+bx2
Y . = . = — tan l
3 } V2 13?/2_ V2 3 ° i2 _ Wx2X2

) VizL = \7i3L \7i2 i3 = \7i3L
o Uy L=V LV i3=Vi,L

1 1
o VyL=Vi,LVyiz=V;,lL
o Uy L=V LV i3="Vi,L

2 2
o Vw L=Vi,LVw_ i2= x2VilL

2 2
o Uyl =ViLVyiz=Vi,LWy,

Example:

o leen (l7 L) ® y2 = tanh(iz)
® i3=1i1+ by +i,+b,,

e UV, L= \7 L Viyy, =V, L (1 — tanh?(i3)) o ir= Wy
2

® VizL = \713L \712 i3 = \7i3L

® Vble - ViSL Vbxl i3 - ViBL

o VyL=Vi,LVyiz=V;,lL

o Uy L=V LV i3="Vi,L
2 2

o Vw L=Vi,LVw_ i2= x2VilL
2 2

o Uyl =ViLVyiz=Vi,LWy,

o Vw L=V LVy,_ i1=x1ViL
1 1

© VyL=ViLVyi1t= ViL Wy

o i1 = Wyxx1

When to use “=" vs “+="

e In the forward computation a variable may be used multiple times to compute

other intermediate variables
e During backward computations, the first time the derivative is computed for

TR

the variable, the we will use “=

e In subsequent computations we use “+="
e It may be difficult to keep track of when we first compute the derivative for a

variable
o When to use “=" vs when to use “+="*

e Cheap trick:
o Initialize all derivatives to 0 during computation
o Always use “+=*
o You will get the correct answer (why?)

® |n the figures below which example do you think uses “+="7?

° 0) ‘ "

6"

® |nthe example (left figure) we showed before, we kept using “=", think about why it worked
® |n the new example (right figure), which variable requires “+="?

0 0) ‘ "

6"

® |nthe example (left figure) we showed before, we kept using “=", think about why it worked
® |n the new example (right figure), which variable requires “+="?

References

https://deeplearning.cs.cmu.edu/S21/document/recitation/Recitation2.pdf

https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.1.pdf

https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.2.pdf

https://deeplearning.cs.cmu.edu/S20/document/recitation/recitation-2.pdf

https://pytorch.org/docs/stable/nn.html#loss-functions

https://towardsdatascience.com/understanding-backpropagation-algorithm-

/bb3aa2f95fd

https://deeplearning.cs.cmu.edu/S21/document/recitation/Recitation2.pdf
https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.1.pdf
https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.2.pdf
https://deeplearning.cs.cmu.edu/S20/document/recitation/recitation-2.pdf
https://pytorch.org/docs/stable/nn.html
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

